Exam Advanced Logic

June 16th, 2015

Instructions:

- Put your name and student number on the first page.
- Put your name on subsequent pages as well.
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- If you want to inspect your exam after it has been graded, you can do so by making an appointment with Rineke Verbrugge.
- Please fill in the anonymous course evaluation.

Good luck!

1. Induction ($\mathbf{1 0} \mathbf{~ p t}$) Let $\Pi(A)$ be the set of propositional atoms occurring in A. For example, $\Pi((p \equiv \neg q))=\{p, q\}$.
Now consider the following sublanguage \mathscr{L}_{E} of the language of propositional logic.
i Each propositional parameter p is a formula of \mathscr{L}_{E}.
ii If A is a formula of \mathscr{L}_{E}, then so is $\neg A$.
iii If A and B are formulas of \mathscr{L}_{E} such that $\Pi(A) \cap \Pi(B)=\emptyset$, then $(A \equiv B)$ is also a formula of \mathscr{L}_{E}.
iv Nothing is a formula of \mathscr{L}_{E} unless it is generated by finitely many repeated applications of i , ii and iii.

Prove the following by induction:
For each formula A of \mathscr{L}_{E}, both A and $\neg A$ are satisfiable.
(Reminder: A formula A is satisfiable if and only if there exists a valuation $v: P \rightarrow\{0,1\}$ such that $v(A)=1$.)
2. Three-valued logics ($\mathbf{1 0} \mathbf{~ p t)}$) Using a truth table, determine whether the following inference holds in LP:

$$
p \supset q, \neg p \supset q \models_{L P} q
$$

Do not forget to draw a conclusion.
3. Tableaus for FDE and related many-valued logics (10 pt) By constructing a suitable tableau, determine whether the following inference is valid in $\mathbf{K}_{\mathbf{3}}$. If the inference is invalid, provide a counter-model.

$$
\neg(p \wedge q) \vee(\neg p \wedge \neg q) \vdash_{K_{3}} \neg p
$$

NB: Do not forget to draw a conclusion from the tableau.
4. Fuzzy logic ($\mathbf{1 0} \mathbf{~ p t}$) Determine whether the following holds in the fuzzy logic with $D=$ $\{x: x \geq 0.7\}$. If so, show that if the premises have value at least 0.7 , so does the conclusion. If not, provide a counter-model.

$$
p \rightarrow q, q \rightarrow r \models_{0.7} p \rightarrow r
$$

5. Basic modal tableau (10 pt) By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

$$
\square p \supset \square(\square p \wedge p) \vdash_{K} \square p \supset \square \square p
$$

NB: Do not forget to draw a conclusion from the tableau.
6. Normal modal tableau (10 pt) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in $K_{\eta \delta}^{t}$. If the inference is invalid, provide a counter-model.

$$
[F] p \vdash_{K_{\eta \delta}^{t}}\langle F\rangle\langle F\rangle p
$$

NB: Do not forget to draw a conclusion from the tableau.
7. Soundness and completeness (10pt) The following question is about the completeness lemma for the normal modal logic $K_{\rho \tau}$.

Let b be a complete open branch of a $K_{\rho \tau}$-tableau, and let $I=\langle W, R, v\rangle$ be the interpretation that is induced by b. Show that the accessibility relation R of I is reflexive and transitive.
8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in $V K$. If the inference is invalid, provide a countermodel.

$$
\exists x P x \supset \exists x \square P x \vdash_{V K} \exists x P x \supset \square \exists x P x
$$

NB: Do not forget to draw a conclusion from the tableau.
9. Default logic ($\mathbf{1 0} \mathbf{~ p t}$) The following translation key is given:
$G(x) \quad x$ missed the first three lectures of Advanced Logic
$B(x) \quad x$ became a member of the board of Cover
$A(x) \quad x$ joined the excursion to New Zealand
$d \quad$ Douwe
Consider the following set of default rules:

$$
D=\left\{\delta_{1}=\frac{B(x): \neg A(x)}{\neg A(x)}, \quad \delta_{2}=\frac{A(x): G(x)}{B(x)}, \quad \delta_{3}=\frac{G(x): A(x)}{A(x)}\right\},
$$

and initial set of facts:

$$
W=\{B(d), G(d)\}
$$

This exercise is about the default theory $T=(W, D)$; so you only need to apply the defaults to the relevant constant d.
(a) Of each of the following sequences, state whether it is a process; and if so, whether or not the process is closed, and whether or not it is successful. Briefly explain your answers.
i. \emptyset (the empty sequence ())
ii. $\left(\delta_{1}\right)$
iii. $\left(\delta_{2}\right)$
iv. $\left(\delta_{3}\right)$
v. $\left(\delta_{3}, \delta_{2}\right)$
vi. $\left(\delta_{3}, \delta_{2}, \delta_{1}\right)$
(b) Draw the process tree of the default theory (W, D).
(c) What are the extensions of (W, D) ?

